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GALILEAN-INVARIANT AND THERMODYNAMICALLY CONSISTENT

MODEL OF A COMPOSITE ISOTROPIC MEDIUM

UDC 517:9:539:3S. K. Godunov

The hydrodynamics of a multiphase media or a mixture is formalized in the form of a hyperbolic
system taking into account chemical reactions. Additional conditions consistent with the system are
found for the solutions to ensure conservation of energy and momentum.
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Introduction. The wide use of various mathematical models for continuous media in commercial calcula-
tions and analytical studies has led to the problem of formalizing the laws of thermodynamics for the systems of
equations governing the behavior of solutions of such models.

Examples of such formalizations are described in [1–5]. The present paper continues collecting systems of
Galilean-invariant equations that can be defined concretely by specifying one reproducing potential L expressed in
terms of unknown functions ui, qj , . . ., T .

Section 1 deals with the equations of gas dynamics in which the gas is a mixture of chemical substances
reacting with each other. In essence, here the question is one more possible formulation based on the well-known
description of reactions using the law of mass action. As unknown functions we have to choose, instead of ordinary
Gibbs potentials, some of their combinations that are more suitable in using Euler coordinates.

Equations from Sec. 2 can be to regarded as a complicated version of the equations from Sec. 1. The medium
in this case is also treated as a mixture of reactants but the reactants are assumed to be broken up into small-size
meshes adjoining each other and the phase transitions between them are modeled by equations of the same type as
the reactions in Sec. 1. Although the meshes are treated as microscopic details constituting a macroscopic medium
described by our equations, the presence of these details is a reason for which it is necessary to take into account
the inhomogeneity of the velocity fields inside the meshes (it can be assumed, for example, that the motion of
the mesh boundaries causes the added-mass effect in them, resulting in a difference between the velocity near the
boundaries and the velocity at the centers of the meshes or it can be assumed that the bubble meshes move relative
to the matrix material in which they are impregnated). To take into account inhomogeneity of this kind, we use,
in addition to the momentum vector with components ρui averaged over neighboring meshes, one more vector
characteristic with components v

(j)
i that has the dimension of momentum and characterizes the inhomogeneity of

the velocity field. (In conversion to a new coordinate system moving at a constant velocity relative to the old one,
the components ui are replaced by ui + Ui and v

(j)
i do not change.)

Our model has evolved as a natural formal modification of the equations used by physicists for superfluid
liquids (see [6]). Its development was motivated by theoretical papers [7–9] on modeling a liquid with impregnated
bubbles. These papers pointed out the necessity of introducing two velocity fields to take into account the liquid
masses added to the bubbles. Unfortunately, we were unable to use the results of [7–9] in the derivation of our
equations describing a medium whose elements contain averages over a large number of bubbles. This is partly due
to the fact that in the cited papers, the liquid is incompressible whereas we take into account its compressibility,
and partly because it is unclear how to complete these studies with allowance for the statistics of bubble oscillations,
which would enable accounting for their effect on the medium in a thermodynamic way.
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We do not attempt to derive the equations studied in Sec. 2 and confine ourselves to the above brief
explanation of the reasons for the choice of the parameters describing the medium. At the same time, we substantiate
the correctness (in a local sense) of the studied equations in the nondissipative version in great detail. It turns
out that our system is symmetric hyperbolic and it is possible to distinguish a class of its solutions for which the
physically meaningful conservation laws hold. The inclusion of reactions and dissipative terms does not violate
these conservation laws but modifies them, transforming one of them to the law of entropy increase.

All these facts, in essence, serve to justify the reasonableness of the choice of the proposed system from
nontrivial theoretical considerations. We would like to attract the attention of researchers dealing with multiphase
media to the discussion of the model described here. Of course, this model cannot be considered complete but we
hope that its analysis may be useful.

1. Gas Dynamics in a Nearly Equilibrium Chemical Medium. The state of an element of the
media considered in this section is described by the pressure P , temperature T , internal energy E, entropy S, and
volume V per unit mass. The density ρ is related to the specific volume by equality ρ = 1/V . The elemental
composition is described by the numbers Nj , i.e., the number of gram molecules of the jth substance in unit mass
(in one gram). In this case,

ρ =
∑

j

ρNj ,
∑

j

Nj = 1.

The velocity components of the center of gravity of the element are denoted by ui.
The so-called thermodynamic potential of the medium

Φ = E − TS + PV

is defined by the equation of state

Φ = Φ(T, P,N1, N2, . . .).

The thermodynamic identity

dΦ = −S dT + V dP + µk dNk

relates Φ to the parameters S and V and the so-called Gibbs chemical potentials µj . This identity implies

dP = ρ d(Φ− µkNk − uiui/2) + ρui dui + ρS dT + ρNj dµj

=
( ∑

j

ρNj

)
d(Φ− µkNk − uiui/2) + ρui dui + ρS dT + ρNj dµj

= ρNj d(µj + Φ− µkNk − uiui/2) + ρui dui + ρS dT.

Introducing the notation

qj = µj + (Φ− µkNk)− uiui/2, L = P,

we obtain the thermodynamic relation

dL = ρNj dqj + ρui dui + ρS dT

for the reproducing potential L, which is used to describe the system of equations governing the motion of the
medium and processes in it. This reproducing potential is given by the equation of state

L = L(q1, q2, . . . , u1, u2, u3, T ) = Λ(q1 + uiui/2, q2 + uiui/2, . . . , T ).

In this case,

ρNj = Lqj
, ρui = Lui

, ρS = LT , ρ =
∑

j

Lqj
,

and the total energy E (internal and kinetic) of unit volume is defined by the formula

ρ(E + uiui/2) = E = qjLqj
+ uiLui

+ TLT − L.

In other words, E is this Legendre transform of the potential L with respect to its arguments qj , ui, and T .
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If the motion of the medium is not accompanied by chemical reactions, it is described by the gas-dynamic
equations

∂ρui

∂t
+

∂ (ρuiuk + P )
∂xk

= 0,
∂ρNj

∂t
+

∂ (ukρNj)
∂xk

= 0,
∂ρS

∂t
+

∂ (ukρS)
∂xk

= 0,

in which the continuity equation

∂ρ

∂t
+

∂ (ukρ)
∂xk

= 0

is replaced by the mass conservation laws

∂ρNj

∂t
+

∂ (ukρNj)
∂xk

= 0

for each component. The sum of equalities expressing these laws coincides with the continuity equation. In the
notation introduced above, the gas-dynamic equations are written as

∂Lui

∂t
+

∂ (ukL)ui

∂xk
= 0,

∂Lqj

∂t
+

∂ (ukL)qj

∂xk
= 0,

∂LT

∂t
+

∂ (ukL)T

∂xk
= 0.

Linear combination of the above equalities with the coefficients ui, qj , and T based on the identities

ui dLui + qj dLqj + T dLT = dE,

ui d(ukL)ui + qj d(ukL)qj + T d(ukL)T = d[uk(E + L)]

leads to the energy conservation law

∂E

∂t
+

∂ [uk(E + L)]
∂xk

= 0.

The reactions proceeding in a medium with a nearly equilibrium chemical state can be described using the law of
mass action (see, for example, [10, 11]):

∂Nj

∂t
+ uk

∂Nj

∂xk
≡ dNj

dt
= −

∑
s

ν
(s)
j

(ν
(s)
l µl

τs

)
.

The stoichiometric coefficient ν
(s)
j is proportional to the number of gram moles of the jth reactant consumed (if

ν
(s)
j > 0) or reproduced (if ν

(s)
j < 0) in the reaction with number s; µk is the chemical potential of the kth reactant.

By τs we denote a certain characteristic time of the sth reaction. (The reaction rate is proportional to 1/τs.) From
the mass conservation law, it follows that the stoichiometric coefficients for each fixed s should be lined by the
relation ∑

k

ν
(s)
k = 0.

Therefore,

ν
(s)
l µl = ν

(s)
l [µl + (Φ− µjNj − uiui/2)] = ν

(s)
l ql,

and the reaction equations are rewritten as

dNj

dt
= −

∑
s

ν
(s)
j

(ν
(s)
l ql

τs

)
,

∂ρNj

∂t
+

∂ (ukρNj)
∂xk

= −ρ
∑

s

ν
(s)
j

(ν
(s)
l ql

τs

)
.

The second of these equalities is obtained from the first using the continuity equation and, in the employed variables,
it has the form

∂Lqj

∂t
+

∂ (ukL)qj

∂xk
= −

( ∑
l

Lql

) ∑
s

ν
(s)
j

(ν
(s)
l ql

τs

)
.

615



It is necessary to introduce a nonzero right side into the entropy equation:

∂LT

∂t
+

∂ (ukLT )
∂xk

=
( 1

T

∑
l

Lql

) ∑
s

(ν(s)
l ql)2

τs
> 0.

As a result, the gas-dynamic equations taking into account chemical reactions become

∂Lui

∂t
+

∂ (ukL)ui

∂xk
= 0,

∂Lqj

∂t
+

∂ (ukL)qj

∂xk
= −

( ∑
l

Lql

)
ν

(s)
j

(ν
(s)
l ql

τs

)
,

∂LT

∂t
+

∂ (ukL)T

∂xk
=

( 1
T

∑
l

Lql

) ∑
s

(ν(s)
l ql)2

τs
,

∂E

∂t
+

∂ [uk(E + L)]
∂xk

= 0.

This system includes the last equality — the energy conservation law. As in the case of no reactions, this equality
is obtained from the previous ones by multiplying into the corresponding factors ui, qi, and T . In order to obtain
a zero right side in the energy Equation in this case, we had to define the right side in the entropy equation in a
special manner. This ensured satisfaction of the entropy increase law.

Next, the equations are modified by including in them terms describing viscosity, thermal conductivity,
diffusion, and thermal diffusion. The thermal conductivity is denoted by K, and the matrix diffusion coefficients
and the vector thermal diffusivities are denoted by Djm and Bj , respectively. The viscous stress tensor σik, as
usual, is expressed in terms of the derivatives of the velocity and the nonnegative viscosities α and β:

σik =
α

2

( ∂ui

∂xk
+

∂uk

∂xi

)
+ βδik

∂um

∂xm
.

In this case, the power of the work of viscous forces in unit volume is nonnegative:

σik
∂ui

∂xk
= α

∑
ik

[1
2

( ∂ui

∂xk
+

∂uk

∂xi

)]2

+ β
(∂um

∂xm

)2

> 0.

We write the final equations, including the energy conservation law in them without additional explanations in the
hope that this will not cause difficulties for the close reader:

∂Lui

∂t
+

∂ (ukL)ui

∂xk
=

∂

∂xk
σik,

∂Lqj

∂t
+

∂ (ukL)qj

∂xk
= −

( ∑
l

Lql

)
ν

(s)
j

( (ν(s)
l ql)2

τs

)
+

∂

∂xk

[
Djm

∂qm

∂xk
+ Bj

∂T

∂xk

]
,

∂LT

∂t
+

∂ (ukL)T

∂xk
=

∂

∂xk

(K

T

∂T

∂xk

)

+
1
T

[ ∂ui

∂xk
σik

( ∑
l

Lql

)(ν
(s)
l ql

τs

)2

+
∂qj

∂xk

(
Djm

∂qm

∂xk
+ Bj

∂T

∂xk

)
+ K

∂T

∂xk

∂T

∂xk

]
,

∂E

∂t
+

∂

∂xk

[
uk(E + L)− uiσik − qj

(
Djm

∂qm

∂xk
+ Bj

∂T

∂xk

)
−K

∂T

∂xk

]
= 0.

The quadratic form of the derivatives
∂qj

∂xk
Djm

∂qm

∂xk
+

∂qj

∂xk
Bj

∂T

∂xk
+ K

∂T

∂xk

∂T

∂xk
> 0

should be assumed to be nonnegative definite to ensure a nondecrease of entropy in adiabatically insulated volumes.
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2. Accounting for Interaction between the Constituents (Phases) of the Medium. Before
considering new thermodynamically consistent models, we give a formal description of a somewhat modified form
of the mathematical model of a superfluid liquid (see[9]). This form was proposed by Romensky to model a bubble
medium. Similar equations have been used in modeling geophysical processes [12–15]. The basic equations are not
divergent:

∂Lui

∂t
+

∂ (ukL)ui

∂xk
+ Lvi

∂vk

∂xk
− Lvk

∂vk

∂xi
= 0,

∂Lvi

∂t
+

∂ (ukL)vi

∂xk
− Lvi

∂uk

∂xk
+ Lvk

∂uk

∂xi
+

∂q

∂xi
= 0,

(2.1)
∂Lq

∂t
+

∂ (ukL)q

∂xk
+

∂vk

∂xk
= 0,

∂LT

∂t
+

∂ (ukL)T

∂xk
= 0.

At the same time, if the reproducing potential

L = L(q, u1, u2, u3, v1, v2, v3, T )

is a convex function of its arguments and if

L = Λ(q + uiui/2, vivi, T ),

then these equations are Galilean-invariant and can be rewritten in quasilinear form as symmetric, Friedrichs-
hyperbolic equations. Therefore, if the initial data for the system in question are smooth enough, then the system
has a unique fairly smooth solution in a certain finite time interval. For each solution, the trajectories dxk/dt = uk

are characteristics, along which the following relations hold:
dΩ
dt
≡ ∂Ωi

∂t
+ uk

∂Ωi

∂xk
= Ωk

∂ui

∂xk
− Ωi

∂uk

∂xi
. (2.2)

Here
Ω1 =

∂Lv2

∂x3
− ∂Lv3

∂x2
, Ω2 =

∂Lv3

∂x1
− ∂Lv1

∂x3
, Ω3 =

∂Lv1

∂x2
− ∂Lv2

∂x1
.

Relations (2.2) are ordinary homogeneous linear differential equations, for which the uniqueness theorem states that
if at the initial time, Ωk = 0 (k = 1, 2, 3), then these equalities hold true in the future. In other words, Eqs. (2.1)
are consistent with the additional equations

Ωi = εijk

∂Lvj

∂xk
= 0. (2.3)

For the solutions subject to (2.3), Eqs. (2.1) are equivalent to the conservation laws

∂Lui

∂t
+

∂

∂xk
[(ukL)ui

+ vkLvi
− δikvrLvr

] = 0,

∂Lvi

∂t
+

∂

∂xi
[(ukL)vk

+ q] = 0,
∂Lq

∂t
+

∂

∂xk
[(ukL)q + vk] = 0,

∂LT

∂t
+

∂

∂xk
(ukL)T = 0,

∂E

∂t
+

∂

∂xk
[uk(E + L− viLvi

) + vk(uiLvi
+ q)] = 0,

whose number is greater by unity than the number of unknown functions equal to the number of the basic equa-
tions (2.1).

As in Sec. 1, E denotes the Legendre transform of the reproducing potential with respect to its arguments:

E = qLq + uiLui
+ viLvi

+ TLT − L.

All these properties of system (2.1) are described in detail in [5, 9] and in the Appendix to [3].

617



Our goal is to propose a multiphase model that generalizes system (2.1). Instead of the unknown function q,
as in Sec. 1, we use variables q1, q2, . . . , qj , . . . , each of which is assigned a corresponding vector variable with
components v

(j)
i (i = 1, 2, 3). Using the reproducing potential

L = L(q1, q2, . . . , qj , . . . , u1, u2, u3, T, v
(1)
1 , v

(1)
2 , v

(1)
3 , . . . , v

(j)
1 , v

(j)
2 , v

(j)
3 , . . . , T )

= Λ(q1 + uiui/2, q2 + uiui/2, . . . , qj + uiui/2, v
(1)
i v

(1)
i , . . . , v

(j)
i v

(j)
i , . . . , v

(j)
i v

(k)
i , . . . , T ) (2.4)

we construct a system composed of the recurring second and third lines of (2.1) with particular qj and v
(j)
i in each

line. The first line in (2.1) is supplemented by new terms L
v
(j)
i

∂v
(j)
k /∂xk−L

v
(j)
k

∂v
(j)
k /∂xi, and the last line remains

unchanged:

∂Lui

∂t
+

∂ (ukL)ui

∂xk
+

∑
j

(
L

v
(j)
i

∂v
(j)
k

∂xk
− L

v
(j)
k

∂v
(j)
k

∂xi

)
= 0,

∂L
v
(j)
i

∂t
+

∂ (ukL)
v
(j)
i

∂xk
−

(
L

v
(j)
i

∂uk

∂xk
− L

v
(j)
k

∂uk

∂xi

)
+

∂qi

∂xi
= 0,

∂Lqj

∂t
+

∂ [(ukL)qj + v
(j)
k ]

∂xk
= 0,

∂LT

∂t
+

∂ (ukL)T

∂xk
= 0.

This system will now be further modified. By analogy with Sec. 1, we model the reactions in question, discarding
the zero right terms in the last two lines:

∂Lui

∂t
+

∂ (ukL)ui

∂xk
+

∑
j

(
L

v
(j)
i

∂v
(j)
k

∂xk
− L

v
(j)
k

∂v
(j)
k

∂xi

)
= 0,

∂L
v
(j)
i

∂t
+

∂ (ukL)
v
(j)
i

∂xk
−

(
L

v
(j)
i

∂uk

∂xk
− L

v
(j)
k

∂uk

∂xi

)
+

∂qj

∂xi
= 0,

∂Lqj

∂t
+

∂ [(ukL)qj
+ v

(j)
k ]

∂xk
= −

( ∑
l

Lql

) ∑
s

ν
(s)
j

(ν
(s)
l q

(s)
l

τs

)
,

(2.5)

∂LT

∂t
+

∂ (ukL)T

∂xk
=

( 1
T

∑
l

Lql

) ∑
s

(ν(s)
l q

(s)
l )2

τs
.

Using the same line of reasoning as for system (2.1), it can be proved that system (2.5) in quasilinear form is
symmetric hyperbolic and Galilean-invariant under the assumption that the potential L has representation (2.4)
and is a convex function of its arguments. Therefore, we shall not dwell on this in detail. As in Sec. 1, it is assumed
that:

— The stoichiometric coefficients ν
(s)
j of each of the reactions are subject to the condition∑

j

ν
(s)
j = 0; (2.6)

— Lqj
= ρNj , i.e., the potentials are equal to the mass of the jth substance in unit volume( ∑

j

Nj = 1
)
;

— ρ =
∑

j

Lqj .

Then, from (2.5) and (2.6), it follows that the mass conservation law becomes

∂ρ

∂t
+

∂

∂xk

(
ukρ +

∑
j

v
(j)
k

)
= 0.
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By the same line of reasoning as that used to substantiate the consistency of (2.1) with (2.3), it can be shown
that (2.5) is consistent with the additional equations

∂L
v
(j)
2

∂x3
−

∂L
v
(j)
3

∂x2
= 0,

∂L
v
(j)
3

∂x1
−

∂L
v
(j)
1

∂x3
= 0,

∂L
v
(j)
1

∂x2
−

∂L
v
(j)
2

∂x1
= 0. (2.7)

Simultaneous fulfillment of (2.5) and (2.7) implies the validity of the conservation laws

∂Lui

∂t
+

∂

∂xk

[
(ukL)ui

+
∑

j

(v(j)
k L

v
(j)
i
− δikv(j)

r L
v
(j)
r

)
]

= 0,

∂E

∂t
+

∂

∂xk

{
uk(E + L) +

∑
j

[(uiv
(j)
k − ukv

(j)
i )L

v
(j)
i

+ qjv
(j)
k ]

}
= 0,

(2.8)

which model momentum and energy conservation. Here

E = qjLqj + uiLui + v
(j)
i L

v
(j)
i

+ TLT − L.

In addition, using (2.7), the second line in (2.5) is also transformed to the conservation law

∂L
v
(j)
i

∂t
+

∂

∂xi
[(ukL)

v
(j)
k

+ q
(j)
i ] = 0. (2.9)

Let us dwell on the inclusion of dissipative viscous terms in Eqs. (2.5).
In the equations of the first line in (2.5) and in the momentum conservation law, the zero on the right side

is easily replaced by ∂σik/∂xk, where

σik =
1
2

α
( ∂ui

∂xk
+

∂uk

∂xi

)
+ βδik

∂ur

∂xr

(α > 0 and β > 0 are the viscosities), i.e., the momentum conservation law becomes

∂Lui

∂t
+

∂

∂xk

[
(ukL)ui +

∑
j

(v(j)
k L

v
(j)
i
− δikv(j)

r L
v
(j)
r

)− σik

]
= 0.

However, the second line in (2.5) or in the conservation law (2.9) should be changed with caution. The fact is that
the consistency of system (2.5) and the additional equations (2.7) is deduced from an analysis of the second line.
It is these additional equations that allow one to establish that the nondivergent equalities in (2.5) are equivalent
to the conservation laws (2.8) and (2.9). The zero right side in the second line in (2.5) can be replaced only by a
vector with components f (j) such that εikl ∂f

(j)
l /∂xk = 0. In this case, the proof of the consistency of (2.5) with

(2.7) will not be violated. In particular, we can set

f
(j)
l =

∂

∂xl
σ̂(j), σ̂(j) = γ(j) ∂v

(j)
k

∂xk
,

replacing (2.9) by

∂L
v
(j)
i

∂t
+

∂

∂xi
[(ukL)

v
(j)
k

+ qj ] =
∂

∂xi
σ̂(j).

The inclusion of dissipative terms also leads to a certain modification of the entropy equation [the last line in (2.5)]
and the energy conservation law:

∂LT

∂t
+

∂

∂xk
(ukL)T =

1
T

[( ∑
l

Lql

) ∑
s

(ν(s)
j qj)2

τs
+

∂ui

∂xk
σik +

∑
j

σ̂(j) ∂v
(j)
i

∂xi

]
,

∂E

∂t
+

∂

∂xk

{
uk(E + L)− uiσik +

∑
j

[(uiv
(j)
k − ukv

(j)
i )L

v
(j)
i

+ v
(j)
k (qj − σ̂(j))]

}
= 0.

Accounting for diffusion, thermal diffusion, and thermal conductivity is similar to that in Sec. 1 and does not require
additional explanations.
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In some cases, it may be useful to describe the thermal state of the media invoking several parameters rather
than only one temperature, for example, as is done in plasma theory, where ion and electron temperatures are
considered.

It may be more convenient to introduce two temperatures T and θ and assume that θ is added to the number
of arguments of the potential L. In this case, in the equations for the two entropies LT and Lθ, the heat sources
for them included in the right sides must be arranged in these equations, for example, as follows:

∂LT

∂t
+

∂

∂xk
(ukLT ) =

1
T

[( ∑
l

Lql

) ∑
s

(ν(s)
j qj)2

τs
+

∂ui

∂xk
σik

]
+ æ

θ − T

T
,

∂Lθ

∂t
+

∂

∂xk
(ukLθ) =

1
θ

[ ∑
j

∂v
(j)
i

∂xi
σ̂(j)

]
+ æ

T − θ

θ
.

Here the right sides include the additional terms æ(θ − T )/T and æ(T − θ)/θ, which do not disturb the energy
balance and contribute to equalization of the temperatures T and θ. Since for æ > 0,

1
T

æ(θ − T ) +
1
θ

æ(T − θ) = æ
(T − θ)2

Tθ
> 0,

the total entropy LT + Lθ increases:

∂ (LT + Lθ)
∂t

+
∂

∂xk
[uk(LT + Lθ)] > 0.

In some cases, it may prove necessary to relate the “additional” entropy Lθ not to the velocity components ui but
to the parameters v

(j)
i of one of the introduced internal mass flows, assuming that qj0 = θ. This, for example,

allows one to describe the occurrence of “second sound” in superfluid helium (see [6, 12–15]). In this case, the
corresponding equations are chosen in the form

∂Lθ

∂t
+

∂ [(ukL)θ + v
(j0)
k ]

∂xk
=

1
θ

[
γ(j0)

(∂v
(j0)
i

∂xi

)2

+ æ(T − θ)
]
,

∂

∂t
L

v
(j0)
i

+
∂

∂xk
(ukL)

v
(j0)
i

− L
v
(j0)
i

∂uk

∂xk
+ L

v
(j0)
k

∂uk

∂xi
+

∂θ

∂xi
=

∂

∂xi

(
γ(j0)

∂v
(j0)
k

∂xk

)
.

The terms Lθ ≡ Lqj0
, of course, should not be included in the sum that defines the density ρ. At this point we finish

our description of one of the possible thermodynamically consistent Galilean-invariant models of the mechanics of
multiphase systems.
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